精英家教网 > 高中数学 > 题目详情
已知y=f(x)是定义在R上的奇函数,且为偶函数,对于函数y=f(x)有下列几种描述,其中描述正确的是( )
①y=f(x)是周期函数;②x=π是它的一条对称轴
③(-π,0)是它图象的一个对称中心;④当时,它一定取最大值
A.①②
B.①③
C.②④
D.②③
【答案】分析:本题函数的性质,先对已知y=f(x)是定义在R上的奇函数,且为偶函数用定义转化为恒等式,再由两个恒等式进行合理变形得出与四个命题有关的结论,通过推理证得①③正确.
解答:证明:由已知可得:
f(-x)=-f(x) …(1)
f(-x-)=-f(x+)…(2)
f(-x+)=f(x+)…(3)
由(3)知 函数f(x)有对称轴x=
由(2)(3)得 f(-x-)=-f(-x+);
令z=-x+则-x-=z-π,
∴f(z-π)=-f(z),
故有f(z-π-π)=-f(z-π),
两者联立得 f(z-2π)=f(z),
可见函数f(x)是周期函数,且周期为2π;
由(1)知:f(-z)=-f(z),代入上式得:f(z-2π)=-f(-z);
由此式可知:函数f(x)有对称中心(-π,0)
由上证知①③是正确的命题.
故应选B.
点评:本题考查的性质以及灵活运用恒等式进行变形寻求答案的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ax
的定义域为(0,+∞),a>0且当x=1时取得最小值,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案