精英家教网 > 高中数学 > 题目详情
已知数列
(1)求数列{an} 的通项公式
(2)若数列bn满足bn=a2n-1,求bn的通项公式bn
【答案】分析:(1)利用,能求出数列{an} 的通项公式.
(2)由an=2n-4,bn=a2n-1,能求出{bn}的通项公式.
解答:解:(1)当n=1时,a1=S1=-2,(3分)
当n≥2时,,(6分)
=2n-4,(8分)
因为a1=-2,也满足,(9分)
所以,数列{an}的通项公式为an=2n-4.(10分)
(2)∵an=2n-4,
∴bn=a2n-1=2(2n-1)-4=4n-6.(13分)
点评:本题考查数列的通项公式的求法,是基础题.解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列a,b,c为各项都是正数的等差数列,公差为d(d>0),在a,b之间和b,c之间共插入m个实数后,所得到的m+3个数所组成的数列{an}是等比数列,其公比为q.
(1)若a=1,m=1,求公差d;
(2)若在a,b之间和b,c之间所插入数的个数均为奇数,求所插入的m个数的乘积(用a,c,m表示),求证:q是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)等差数列{an}中,首项a1=1,公差d≠0,已知数列ak1ak2ak3,…,akn,…成等比数,其中k1=1,k2=2,k3=5.
(1)求数列{an},{kn}的通项公式;
(2)当n∈N+,n≥2时,求和:Sn=
a1
2k1-1
+
a2
2k2-1
+…+
an
2kn-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n为正整数),函数f(x)=
• 
,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},对任意正整数n,都有bn•(4an2-5)=1成立,设Sn为数列{bn}的前n项和,求
lim
n→∞
Sn

(3)在点列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在两点Ai,Aj(i,j为正整数)使直线AiAj的斜率为1?若存在,则求出所有的数对(i,j);若不存在,请你写出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知数列

定义其倒均数是

   (1)求数列{}的倒均数是,求数列{}的通项公式

   (2)设等比数列的首项为-1,公比为,其倒数均为,若存在正整数k,使得当恒成立,试找出一个这样的k值(只需找出一个即可,不必证明)

查看答案和解析>>

科目:高中数学 来源:2011届福建省厦门外国语学校高三上学期11月月考理科数学卷 题型:解答题

(本小题满分13分)已知数列,定义其倒均数是
(1)求数列{}的倒均数是,求数列{}的通项公式
(2)设等比数列的首项为-1,公比为,其倒数均为,若存在正整数k,使恒成立,试求k的最小值。

查看答案和解析>>

同步练习册答案