精英家教网 > 高中数学 > 题目详情
18.设θ为锐角,若cos(θ-$\frac{3π}{4}$)=$\frac{3}{5}$,则sin(θ+$\frac{π}{4}$)=$\frac{4}{5}$.

分析 利用诱导公式求得 cos(θ+$\frac{π}{4}$)=-$\frac{3}{5}$,∴θ+$\frac{π}{4}$为钝角,再利用同角三角的基本关系求得sin(θ+$\frac{π}{4}$)的值.

解答 解:∵θ为锐角,若cos(θ-$\frac{3π}{4}$)=cos($θ+\frac{5π}{4}$)=-cos(θ+$\frac{π}{4}$)=$\frac{3}{5}$,∴cos(θ+$\frac{π}{4}$)=-$\frac{3}{5}$,∴θ+$\frac{π}{4}$为钝角,
则sin(θ+$\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(θ+\frac{π}{4})}$=$\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题主要考查诱导公式、同角三角的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{6}}{2}$,求cosα的值;
(2)已知sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,求cos($\frac{π}{4}$-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},0≤x≤1}\\{x,x>1}\end{array}\right.$,则定积分${∫}_{0}^{2}$f(x)dx=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从6种不同的作物种子中选出4种放入4个不同的瓶子中展出,如果甲、乙两种种子不能放入1号瓶内,那么不同的放法种数共有240.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知抛物线C:y2=4x的焦点为F,点P(2,t)为抛物线C上一点,则|PF|等于(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上、下焦点分别为F1,F2,上焦点F1到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程
(Ⅱ)设过椭圆C的上顶点A的直线l与椭圆交于点B(B不在y轴上),垂直于l的直线与l交于点M,与x轴交于点H,若$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}$=0,且|${\overrightarrow{MO}}$|=|${\overrightarrow{MA}}$|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a=${∫}_{1}^{e}$$\frac{2}{x}$dx,则二项式${({a\sqrt{x}-\frac{1}{{\sqrt{x}}}})^6}$的展开式的常数项是-160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有两对夫妇各带一个小孩到动物园游玩,购票后排成一队依次入园.为安全起见,首尾一定要排两位爸爸,另外两个小孩要排在一起,则这六人的入园顺序排法种数为24.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市举行的英文拼字大赛中,要求每人参赛队选取2名选手比赛,有两种比赛方案,方案一:现场拼词,正确得2分,不正确不得分;方案二:听录音拼词,正确得3分,不正确不得分,比赛项目设个人赛:每位选手可自行选择方案,拼词一次,累计得分高者胜.团体赛:2名选手只能选择同一方案,每人拼词一次,两人得分累计得分高者胜.现有来自某参赛队的甲、乙两名选手,他们在“现场拼词”正确的概率均为$\frac{2}{3}$,在“听录音拼词”正确的概率为p0(0<p0<1).
(Ⅰ)在个人赛上,甲选择了方案一,乙选择了方案二,结果发现他们的累计得分不超过3分的概率为$\frac{7}{9}$,求
p0
(Ⅱ)在团体赛上,甲、乙两人选择何种方案,累计得分的数学期望较大?

查看答案和解析>>

同步练习册答案