已知A,B分别是椭圆C1:
+
=1的左、右顶点,P是椭圆上异于A,B的任意一点,Q是双曲线C2:
-
=1上异于A,B的任意一点,a>b>0.
(1)若P(
,
),Q(
,1),求椭圆C1的方程;
(2)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1·k2+k3·k4为定值.
科目:高中数学 来源: 题型:解答题
如图,已知圆
,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,![]()
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P为圆A:
上的动点,点
.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且
时,求点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为
,设顶点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的中心为原点O,长轴在x轴上,离心率e=
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,
=4.![]()
(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0)的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+
=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求
·
的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线C的方程为
-
=1(a>0,b>0),离心率e=
,顶点到渐近线的距离为
.![]()
(1)求双曲线C的方程;
(2)如图,P是双曲线C上一点,A、B两点在双曲线C的两条渐近线上,且分别位于第一、二象限.若
=λ
,λ∈
.求△AOB的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
的圆心在坐标原点O,且恰好与直线
相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN![]()
轴于N,若动点Q满足
(其中m为非零常数),试求动点
的轨迹方程
.
(3)在(2)的结论下,当
时,得到动点Q的轨迹曲线C,与
垂直的直线
与曲线C交于 B、D两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:
+
=1(a>b>0)的离心率e=
,a2与b2的等差中项为
.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com