精英家教网 > 高中数学 > 题目详情
直线l过椭圆
x2
2
+y2=1
的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为______.
x2
2
+y2=1
,得a2=2,b2=1,所以c2=a2-b2=2-1=1.
则c=1,则左焦点F(-1,0).
由题意可知,直线l的斜率存在且不等于0,
则直线l的方程为y=kx+k.
设l与椭圆相交于P(x1,y1)、Q(x2,y2),
联立
x2
2
+y2=1
y=kx+k
,得:(2k2+1)x2+4k2x+2k-2=0.
所以x1+x2=-
4k2
2k2+1

则PQ的中点M的横坐标为
x1+x2
2
=-
2k2
2k2+1

因为△FMO是以OF为底边的等腰三角形,
所以-
2k2
2k2+1
=-
1
2
.解得:k=±
2
2

所以直线l的方程为y=±
2
2
(x+1)

故答案为y=±
2
2
(x+1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,过点M(-2,0)的直线l与椭圆
x22
+y2=1
交于p1、P2两点,点P是线段p1P2的中点.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1
及直线l:y=x+m.
(1)当直线l与椭圆有公共点时,求实数m的取值范围;
(2)若直线l过椭圆右焦点,并与椭圆交于A、B两点,求弦AB之长.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①已知直线a,b和平面α,若a∥b,b∥α,则a∥α;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),则直线y=
b
a
x+m(m∈R)与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆
x2
2
+y2=1交于P1P2两点,线段P1P2中点为P,设直线l斜率为k1(k≠0),直线OP的斜率为k2,则k1k2等于-
1
2

其中,正确命题的序号为
④⑤
④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过椭圆
x2
2
+y2=1
的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为
y=±
2
2
(x+1)
y=±
2
2
(x+1)

查看答案和解析>>

同步练习册答案