精英家教网 > 高中数学 > 题目详情

对a、b∈R,记数学公式,设f1(x)=|x-1|,数学公式,函数g(x)=max{f1(x),f2(x)},若方程g(x)=a有四个不同的实数解,则实数a的取值范围是________.

a∈(3,4)
分析:由题意可得当|x-1|≥-x2+6x-5时,g(x)=|x-1|,当|x-1|<-x2+6x-5时,g(x)=-x2+6x-5,据此可作出函数g(x)和y=a的图象,数形结合可得结论.
解答:由题意可知当|x-1|≥-x2+6x-5时,g(x)=|x-1|,
当|x-1|<-x2+6x-5时,g(x)=-x2+6x-5,
作出函数g(x)和y=a的图象如下:

其中红色线为g(x)的图象,由图可知当a∈(3,4)时,
直线y=a和函数g(x)有4个不同的公共点,
故方程g(x)=a有四个不同的实数解,
故答案为:a∈(3,4)
点评:本题考查根的存在性和个数的判断,数形结合是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对a、b∈R,记max{a,b}=
a,a≥b
b,a<b
,设f1(x)=|x-1|,f2(x)=-x2+6x-5,函数g(x)=max{f1(x),f2(x)},若方程g(x)=a有四个不同的实数解,则实数a的取值范围是
a∈(3,4)
a∈(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)由1,2,3,4,5,6,7,8,9,10按任意顺序组成的没有重复数字的数组,记为t=(x1,x2,…,x10),设S(t)=
10k=1
|
2xk-3xk+1|,其中x11=x1
(Ⅰ)若t=(10,9,8,7,6,5,4,3,2,1),求S(t)的值;
(Ⅱ)求证:S(t)≥55;
(Ⅲ)求S(t)的最大值.
(注:对任意a,b∈R,||a||-|b||≤|a+b|≤|a|+|b|都成立.)

查看答案和解析>>

科目:高中数学 来源:广西柳铁一中2012届高三第四次月考数学理科试题 题型:044

设函数f(x)=x2+ax+b(a,b∈R),若函数在点(1,f(1))处的切线为4x―y―16=0,数列{an}、{bn}定义:

(1)求实数a、b的值;

(2)若将数列{bn}的前n项的和与积分别记为Sn、Tn.证明:对任意正整数n,为定值;证明:对任意正整数n,都有

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省宜春市上高二中高一(上)期末数学试卷(解析版) 题型:填空题

对a、b∈R,记,设f1(x)=|x-1|,,函数g(x)=max{f1(x),f2(x)},若方程g(x)=a有四个不同的实数解,则实数a的取值范围是   

查看答案和解析>>

同步练习册答案