精英家教网 > 高中数学 > 题目详情

如图,已知平面ABC⊥平面BCDE,△DEF与△ABC分别是棱长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,DE∥BC,BC⊥CD,CD=1,点G为△ABC的重心,N为AB中点,=λ(λ∈R,λ>0).

(Ⅰ)当时,求证:GM∥平面DFN.

(Ⅱ)若直线MN与CD所成角为,试求二面角M-BC-D的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.
(1)证明AB1∥平面DBC1
(2)假设AB1⊥BC1,BC=2,求线段AB1在侧面B1BCC1上的射影长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知平面A1B1C1平行于三棱锥V-ABC的底面ABC,等边△AB1C所在的平面与底面ABC垂直,且∠ACB=90°,设AC=2a,BC=a
(1)求证直线B1C1是异面直线AB1与A1C1的公垂线;
(2)求点A到平面VBC的距离;
(3)求二面角A-VB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)如图,已知平面上直线l1∥l2,A、B分别是l1、l2上的动点,C是l1,l2之间一定点,C到l1的距离CM=1,C到l2的距离CN=
3
,△ABC内角A、B、C所对 边分别为a、b、c,a>b,且bcosB=acosA
(1)判断三角形△ABC的形状;
(2)记∠ACM=θ,f(θ)=
1
AC
+
1
BC
,求f(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知Rt△ABC 中,AB=AC=
2
,AD是斜边BC 上的高,以 AD为折痕,将△ABD折起,使∠BDC为直角.
(1)求证:平面ABD⊥平面BDC;
(2)求证:∠BAC=60°
(3)求点D到平面ABC的距离.

查看答案和解析>>

同步练习册答案