如图,在四棱锥
中,底面
为直角梯形,且
,
,侧面
底面
. 若
.
(1)求证:
平面
;
(2)侧棱
上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(3)求二面角
的余弦值.![]()
(1)见解析(2)见解析(3)![]()
解析试题分析:(1)由侧面
底面
,PA⊥AD及面面垂直性质定理得,PA⊥面ABCD,由线面垂直定义可得PA⊥CD,通过计算可证CD⊥AC,根据线面垂直判定定理可得CD⊥面PAC;(2)若E是PA中点,F是CD中点,连结BE,EF,CF,由三角形中位线定理及平行公理可证四边形BEFC为平行四边形,则BE∥CF,根据线面平行的判定定理可得;(3)以A为原点,AB,AC,AP分别为
轴建立空间直角坐标系,显然
是平面PAD的法向量,求出PCD的法向量,求出这两个法向量的夹角的余弦值,即可求出二面角A-PD—C的余弦值.
试题解析:(1)因为
,所以
.
又因为侧面
底面
,且侧面
底面
,
所以
底面
.
而
底面
,
所以![]()
.
在底面
中,因为
,
,
所以
, 所以![]()
.
又因为
, 所以
平面
. 4分![]()
(2)在
上存在中点
,使得
平面
,
证明如下:设
的中点是
,
连结
,
,
,
则
,且
.
由已知
,
所以
. 又
,
所以
,且
,
所以四边形
为平行四边形,所以
.
因为
平面
,
平面
,
所以
平面
. 8分
(3)由(1)知,PA⊥面ABCD,以A为原点,AB,AC,AP分别为
轴建立空间直角坐标系
,设AB=1,则P(0,0,1),B(1,0,0)
科目:高中数学 来源: 题型:解答题
如图,ABCD是正方形,O是正方形的中心,PO
底面ABCD,E是PC的中点。![]()
求证:(1)PA∥平面BDE (4分)
(2)平面PAC
平面BDE(6分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥
的底面
是平行四边形,
,
,
分别是棱
的中点.
(1)证明
平面
;
(2)若二面角P-AD-B为
,
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
设
是三个不重合的平面,l 是直线,给出下列四个命题:
①若
;
②若
;
③若l上有两点到
的距离相等,则l//
;
④若
.
其中正确命题的序号是____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com