精英家教网 > 高中数学 > 题目详情
求证:函数f(x)=x+
1x
在区间(0,1]上是减函数.
分析:利用减函数的定义即可证明.
解答:证明:任取x1,x2∈(0,1],且x1<x2
f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)=
(x1-x2)(x1x2-1)
x1x2

∵0<x1<x2≤1,∴x1-x2<0,x1x2-1<0,x1x2>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
f(x)=x+
1
x
在区间(0,1]上是减函数.
点评:正确理解函数的单调性的定义和熟练掌握证明函数单调性的方法步骤是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(-∞,+∞)的函数f(x),对任意x∈R,恒有f(x+
π2
)=-f(x)成立.
(1)求证:函数f(x)是周期函数,并求出它的最小正周期T;
(2)若函数f(x)=Asin(ωx+?)(A>0,ω>0)在一个周期内的图象如图所示,求出f(x)的解析式,写出它的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2xx-2

(1)求证:函数f(x)在区间(2,+∞)内单调递减;
(2)求函数在x∈[3,5]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对于x、y∈R都有f(x+y)=f(x)+f(y),且x<0时,f(x)<0,f(-1)=-2.
(1)求证:函数f(x)是奇函数;
(2)试问f(x)在x∈[-4,4]上是否有最值?若有,求出最值;若无,说明理由.
(3)解关于x的不等式
1
2
f(bx2)-f(x)>
1
2
f(b2x)-f(b)
(b≤0).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a>0)且f(1)=-
a2

(1)求证:函数f(x)有两个零点;
(2)设x1,x2是函数的两个零点,求|x1-x2|的取值范围.

查看答案和解析>>

同步练习册答案