精英家教网 > 高中数学 > 题目详情
已知命题:椭圆
x2
25
+
y2
9
=1
与双曲线
x2
11
-
y2
5
=1
的焦距相等.试将此命题推广到一般情形,使已知命题成为推广后命题的一个特例:______.
分析命题:椭圆
x2
25
+
y2
9
=1
与双曲线
x2
11
-
y2
5
=1
的焦距相等
的特点可得,只要椭圆与双曲线的焦距相等且焦点都在X轴上即可.
所以其推广后的命题为:椭圆
x2
a2
+
y2
a2-16
=1
与双曲线
x2
k2-16
-
y2
k2
=1
的焦距相等.
故答案为:椭圆
x2
a2
+
y2
a2-16
=1
与双曲线
x2
k2-16
-
y2
k2
=1
的焦距相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“椭圆
x2
2
+
y2
m
=1
的焦点在y轴上”;命题q:f(x)=
4
3
x3-2mx2+(4m-3)x-m
在(-∞,+∞)上单调递增,若p∧q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:关于x的不等式x2+(a-1)x+1≤0的解集为∅,命题q:方程
x2
2
+
y2
a
=1表示焦点在y轴上的椭圆,若命题¬q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2
+
y2
m
=1表示焦点在y轴上的椭圆,命题q:实数m满足方程(m+4)x2-(m+2)y2=(m+4)(m+2)为双曲线.若“p∧q”为假命题,“p?q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“方程
x2
9-k
+
y2
k-1
=1
表示焦点在x轴上的椭圆”,命题q:“方程
x2
2-k
+
y2
k
=1
表示双曲线”.
(1)若p是真命题,求实数k的取值范围;
(2)若q是真命题,求实数k的取值范围;
(3)若“p∨q”是真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:关于x的不等式x2+(a-1)x+1≤0的解集为∅,命题q:方程
x2
2
+
y2
a
=1表示焦点在y轴上的椭圆,若命题¬q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案