精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱台中,

1)证明:

2)若,求二面角的余弦值.

【答案】1)详见解析;(2.

【解析】

1)过于点,连接,易证得,进而得到,得到,即,由线面垂直的判定定理得到平面,进而得到

2)根据题意,进一步得到,建立如图空间直角坐标系,分别求得平面的一个法向量和平面的一个法向量,利用公式求得的值,进而得到二面角的余弦值.

1)过于点,连接

因为,所以

所以,所以

所以,即

因为,所以平面

又因为平面,所以

2)因为

所以,所以

所以,因为

所以,所以

如图,以为原点,以的方向为轴,轴,轴的正方向建立空间直角坐标系

易知,所以

所以

是平面的一个法向量,

易知平面的一个法向量

因为二面角为锐角,

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,底面分别是棱的中点,对于平面截四棱锥所得的截面多边形,有以下三个结论:

①截面的面积等于

②截面是一个五边形;

③截面只与四棱锥四条侧棱中的三条相交.

其中,所有正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为:为参数),的参数方程为:为参数).

1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

2)若直线的极坐标方程为:,曲线上的点对应的参数,曲线上的点对应的参数,求的中点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠病毒是一种通过飞沫和接触传播的变异病毒,为筛查该病毒,有一种检验方式是检验血液样本相关指标是否为阳性,对于份血液样本,有以下两种检验方式:一是逐份检验,则需检验次.二是混合检验,将其中份血液样本分别取样混合在一起,若检验结果为阴性,那么这份血液全为阴性,因而检验一次就够了;如果检验结果为阳性,为了明确这份血液究竟哪些为阳性,就需要对它们再逐份检验,此时份血液检验的次数总共为次.某定点医院现取得4份血液样本,考虑以下三种检验方案:方案一,逐个检验;方案二,平均分成两组检验;方案三,四个样本混在一起检验.假设在接受检验的血液样本中,每份样本检验结果是阳性还是阴性都是相互独立的,且每份样本是阴性的概率为

(Ⅰ)求把2份血液样本混合检验结果为阳性的概率;

(Ⅱ)若检验次数的期望值越小,则方案越“优”.方案一、二、三中哪个最“优”?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为为参数),以直角坐标系的原点o为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程是:

(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程:

(Ⅱ)点P是曲线C上的动点,求点P到直线l距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥ABCD中,点EBD上,EAEBECEDBDCD,△ACD为正三角形,点MN分别在AECD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递增,求实数的取值范围;

2)若函数处的切线平行于轴,是否存在整数,使不等式时恒成立?若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线ACBD的交点,AB=2,∠BAD=60°MPD的中点.

(Ⅰ)求证:OM∥平面PAB

(Ⅱ)平面PBD⊥平面PAC

(Ⅲ)当三棱锥CPBD的体积等于 时,求PA的长.

查看答案和解析>>

同步练习册答案