【题目】已知抛物线
的焦点为
,准线为
,
是
上一点,直线
与抛物线交于
,
两点,若
,则
=
A.
B.![]()
C.
D.![]()
【答案】B
【解析】
先根据题意写出直线的方程,再将直线的方程与抛物线y2=2x的方程组成方程组,消去y得到关于x的二次方程,最后利用根与系数的关系结合抛物线的定义即可求线段AB的长.
解:抛物线C:y2=2x的焦点为F(
,0),准线为l:x=﹣
,设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+
,|NF|=dN=x2+
,于是|MN|=|MF|+|NF|=x1+x2+1.
∵
,则
,易知:直线MN的斜率为±
,
![]()
∵F(
,0),
∴直线PF的方程为y=±
(x﹣
),
将y=±
(x﹣
),代入方程y2=2x,得3(x﹣
)2=2x,化简得12x2﹣20x+3=0,
∴x1+x2
,于是|MN|=x1+x2+1
1![]()
故选:B.
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线
的焦点为
.
![]()
若点
为抛物线上异于原点的任一点,过点
作抛物线的切线交
轴于点
,证明:
.
![]()
,
是抛物线上两点,线段
的垂直平分线交
轴于点
(
不与
轴平行),且
.过
轴上一点
作直线
轴,且
被以
为直径的圆截得的弦长为定值,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着时代的发展和社会的进步,“农村淘宝”发展十分迅速,促进“农产品进城”和“消费品下乡”.“农产品进城”很好地解决了农产品与市场的对接问题,使农民收入逐步提高,生活水平得到改善,农村从事网店经营的人收入逐步提高.西凤脐橙是四川省南充市的特产,因果实呈椭圆形、色泽橙红、果面光滑、无核、果肉脆嫩化渣、汁多味浓,深受人们的喜爱.为此小王开网店销售西凤脐橙,每月月初购进西凤脐橙,每售出1吨西凤脐橙获利润800元,未售出的西凤脐橙,每1吨亏损500元.经市场调研,根据以往的销售统计,得到一个月内西凤脐橙市场的需求量的频率分布直方图如图所示.小王为下一个月购进了100吨西凤脐橙,以x(单位:吨)表示下一个月内市场的需求量,y(单位:元)表示下一个月内经销西凤脐橙的销售利润.
![]()
(1)将y表示为x的函数;
(2)根据频率分布直方图估计小王的网店下一个月销售利润y不少于67000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率,(例如:若需求量
,则取
,且
的概率等于需求量落入
的频率),求小王的网店下一个月销售利润y的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
的底面
中,
∥
,
,
平面
,
是
的中点,且![]()
![]()
(1)求证:
∥平面
;
(2)求二面角
的余弦值;
(3)在线段
内是否存在点
,使得
?若存在指出点
的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的导函数为
,且对任意的实数x都有
(e是自然对数的底数),且
,若关于x的不等式
的解集中恰有两个整数,则实数m的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率为
,
为椭圆上一动点(异于左右顶点),
面积的最大值为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于点
两点,问
轴上是否存在点
,使得
是以
为直角顶点的等腰直角三角形?若存在,求点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在菱形
中,
,
为线段
的中点(如图1).将
沿
折起到
的位置,使得平面
平面
,
为线段
的中点(如图2).
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)当四棱锥
的体积为
时,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com