【题目】如图,在四棱锥
中,
、
、
均为等边三角形,
.
(Ⅰ)求证:
平面
;
(Ⅱ)若
,求点
到平面
的距离.
![]()
科目:高中数学 来源: 题型:
【题目】给出下列4个命题,其中正确命题的个数是( )
①计算:9192除以100的余数是1;
②命题“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定义域内是单调函数而且又是奇函数;
④命题p:“|a|+|b|≤1”是命题q:“对任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要条件.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:
=1的离心率e=
,动点P在椭圆C上,点P到椭圆C的两个焦点的距离之和是4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C1的方程为
=1(m>n>0),椭圆C2的方程为
=λ(λ>0,且λ≠1),则称椭圆C2是椭圆C1的λ倍相似椭圆.已知椭圆C2是椭圆C的3倍相似椭圆.若过椭圆C上动点P的切线l交椭圆C2于A,B两点,O为坐标原点,试证明当切线l变化时|PA|=|PB|并研究△OAB面积的变化情况.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的右焦点为
,
是双曲线C上的点,
,连接
并延长
交双曲线C与点P,连接
,若
是以
为顶点的等腰直角三角形,则双曲线C的渐近线方程为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过
吨时,按每吨
元收取;当该用户用水量超过
吨时,超出部分按每吨
元收取.
(1)记某用户在一个收费周期的用水量为
吨,所缴水费为
元,写出
关于
的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为
元,且甲、乙两用户用水量之比为
,试求出甲、乙两用户在该收费周期内各自的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[﹣
,
]的函数f(x)=sinx(cosx+1)﹣ax,若y=f(x)仅有一个零点,则实数a的取值范围是( )
A.(
,2]
B.(﹣∞,
)∪[2,+∞)
C.[﹣
,
)
D.(﹣∞,﹣
]∪(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,已知椭圆
的离心率为
,左右焦点分别为
和
,以点
为圆心,以
为半径的圆与以点
为圆心,以
为半径的圆相交,且交点在椭圆
上.
(
)求椭圆
的方程.
(
)设椭圆
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
、
两点,射线
交椭圆
于点
.
①求
的值.
②(理科生做)求
面积的最大值.
③(文科生做)当
时,
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com