(10分)已知圆C与圆
相交,所得公共弦平行于已知直线
,又圆C经过点A(-2,3),B(1,4),求圆C的方程。
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,
是⊙
的直径,
垂直于⊙
所在的平面,
是圆周上不同于
的一动点.
(1)证明:面PAC
面PBC;
(2)若
,则当直线
与平面
所成角正切值为
时,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)在平面直角坐标系
中,
是抛物线![]()
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.(Ⅰ)求抛物线
的方程;(Ⅱ)是否存在点
,使得直线
与抛物线
相切于点
若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:
.
(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P
向该圆引一条切线,切点为M,O为坐标原点,且有
,
求使得
取得最小值的点P的坐标
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知点P到两个定点M(-1,0),
N(1,0)的距离的比为。
(1)求证点P在一定圆上,并求此圆圆心和半径;
(2)若点N到直线PM的距离为1,求直线PN的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知⊙C:x2+y2-2x-2y+1=0,直线l与⊙C相切且分别交x轴、y轴正向于A、B两点,O为坐标原点,且
=a,
=b(a>2,b>2).
(Ⅰ)求线段AB中点的轨迹方程.
(Ⅱ)求△ABC面积的极小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com