精英家教网 > 高中数学 > 题目详情

已知f(x)=数学公式,g(x)=数学公式
(1)求证:f(x)是奇函数,并求f(x)的单调区间;
(2)分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函数f(x)和g(x)对所有不等于零的实数x都成立的一个等式,并加以证明.

解:

(1)函数f(x)的定义域是{x|x≠0},
∵f(-x)=
∴f(x)是奇函数.…
设0<x1<x2=
∵y=x3r上是增函数,故
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.
又∵f(x)是奇函数,∴f(x)在(-∞,0)上也是增函数.
∴函数f(x)的增区间是(-∞,0)和(0,+∞).
(2)

=,.
同理f(9)-5f(3)g(3)=0.猜想:f(x2)-5f(x)g(x)=0 
证明:


∴等式成立.


分析:(1)利用函数的奇偶性的定义证明,利用单调性的定义确定函数的单调区间.
(2)分别求出f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,然后根据规律得到结论.
点评:本题主要考查函数奇偶性和单调性的判断,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=x3+ax2-x+2
(I)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅲ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
1
2
x2
+mx+
7
2
(m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)-f(2a)<
b-a
2a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,g(x)=(
1
2
x-m.若对任意x1∈[-1,3],总存在x2∈[0,2],使得f(x1)≥g(x2)成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex,g(x)=lnx.
(Ⅰ)求证:g(x)<x<f(x);
(Ⅱ)设直线l与f(x)、g(x)均相切,切点分别为(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求证:x1>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x,g(x)=3x
(1)当x为何值时,f(x)=g(x)?
(2)当x为何值时,f(x)>1?f(x)=1?f(x)<1?
(3)当x为何值时,g(x)>3?g(x)=3?g(x)<3?

查看答案和解析>>

同步练习册答案