(1)a0+a1+a2+a3+a4;
(2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;
(3)a1+a3+a5;
(4)(a0+a2+a4)2-(a1+a3+a5)2.
剖析:(2x-1)5=a0+a1x+a2x2+…+a5x5为关于x的恒等式,求系数和的问题可用赋值法解决.
解:设f(x)=(2x-1)5=a0+a1x+a2x2+…+a5x5,则f(1)=a0+a1+a2+…+a5=1,
f(-1)=a0-a1+a2-a3+a4-a5=(-3)5=-243.
(1)∵a5=25=32,
∴a0+a1+a2+a3+a4=f(1)-32=-31.
(2)|a0|+|a1|+|a2|+…+|a5|=-a0+a1-a2+a3-a4+a5=-f(-1)=243.
(3)∵f(1)-f(-1)=2(a1+a3+a5),
∴a1+a3+a5=
=122.
(4)(a0+a2+a4)2-(a1+a3+a5)2
=(a0+a1+a2+a3+a4+a5)(a0-a1+a2-a3+a4-a5)=f(1)×f(-1)=243.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:数学教研室 题型:013
A.(2x+2)5
B.32x5
C.(2x-1)5
D.2x5
查看答案和解析>>
科目:高中数学 来源:2013-2014学年安徽省安庆市望江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2013届福建省泉州市高二下学期期中文科数学试卷(解析版) 题型:解答题
已知二次函数
的二次项系数为
,且不等式
的解集为
,
(1)若方程
有两个相等的根,求
的解析式;
(2)若
的最大值为正数,求
的取值范围.
【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),
设出二次函数的解析式,然后利用判别式得到a的值。
第二问中,
解:(1)∵f(x)+2x>0的解集为(1,3),
①
由方程![]()
②
∵方程②有两个相等的根,
∴
,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:![]()
(2)由![]()
![]()
![]()
由
解得:
![]()
故当f(x)的最大值为正数时,实数a的取值范围是![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com