【题目】已知椭圆
的左、右焦点分别为
、
,离心率
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)设过点
且不与坐标轴垂直的直线交椭圆
于
、
两点,线段
的垂直平分线与
轴交于点
,求点
的横坐标的取值范围;
(3)在第(2)问的条件下,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点为极点,以
轴的非负半轴为极轴建立极坐标系,已知曲线
的参数方程为
(
为参数,
),直线
的参数方程为
(
为参数).
(1)点
在曲线
上,且曲线
在点
处的切线与直线
垂直,求点
的极坐标;
(2)设直线
与曲线
有两个不同的交点,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来我国电子商务行业迎来蓬勃发展的新机遇,2016年双11期间,某平台的销售业绩高达918亿人民币,与此同时,相关管理部门也推出了针对电商的商品和服务评价体系,现从评价系统中随机选出200次成功的交易,并对其评价结果进行统计,对商品的好评率为
,对服务的好评率为
,其中对商品和服务都做出好评的交易为80次.
在犯错误概率不超过( )的前提下,认为商品好评与服务好评有关.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
为自然对数的底数).
(1)若函数
的图象在
处的切线方程为
,求
,
的值;
(2)若
时,函数
在
内是增函数,求
的取值范围;
(3)当
时,设函数
的图象
与函数
的图象
交于点
、
,过线段
的中点
作
轴的垂线分别交
、
于点
、
,问是否存在点
,使
在
处的切线与
在
处的切线平行?若存在,求出
的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是
或
作品获得一等奖”;
乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”;
丁说:“是
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com