【题目】已知两个不相等的非零向量
,两组向量
和
均由2个
和3个
排列而成,记
,
表示
所有可能取值中的最小值,则下列命题中
(1)
有5个不同的值;(2)若
则
与
无关;(3)若
,则
与
无关;(4)若
,则
;(5)若
,
,则
与
的夹角为
.正确的是( )
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)
科目:高中数学 来源: 题型:
【题目】对于数列
,称
(其中
)为数列
的前k项“波动均值”.若对任意的
,都有
,则称数列
为“趋稳数列”.
(1)若数列1,
,2为“趋稳数列”,求
的取值范围;
(2)若各项均为正数的等比数列
的公比
,求证:
是“趋稳数列”;
(3)已知数列
的首项为1,各项均为整数,前
项的和为
. 且对任意
,都有
, 试计算:
(
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是定义在
上的函数,如果存在常数
,对区间
的任意划分:
,和式
恒成立,则称
为
上的“绝对差有界函数”。注:
。
(1)证明函数
在
上是“绝对差有界函数”。
(2)证明函数
不是
上的“绝对差有界函数”。
(3)记集合
存在常数
,对任意的
,有
成立
,证明集合
中的任意函数
为“绝对差有界函数”,并判断
是否在集合
中,如果在,请证明并求
的最小值;如果不在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点为F,短轴的两个端点分别为A,B,且
,
为等边三角形.
![]()
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线
与椭圆C交于另一点J,若
,试求以线段
为直径的圆的方程;
(3)已知
是过点A的两条互相垂直的直线,直线
与圆
相交于P,Q两点,直线
与椭圆C交于另一点R,求
面积最大值时,直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( )
A.2400元B.2560元C.2816元D.4576元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台举行一个比赛类型的娱乐节目,
两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将
队第六位选手的成绩没有给出,并且告知大家
队的平均分比
队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.
![]()
(1)主持人从
队所有选手成绩中随机抽取2个,求至少有一个为“晋级”的概率;
(2)主持人从
两队所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某甲
篮球队的12名队员(含2名外援)中有5名主力队员(含一名外援),主教练要从12名队员中选5人首发上场,则主力队员不少于4人,且有一名外援上场的概率是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
和函数
,
(1)若
为偶函数,试判断
的奇偶性;
(2)若方程
有两个不等的实根
,则
①试判断函数
在区间
上是否具有单调性,并说明理由;
②若方程
的两实根为
求使
成立的
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-
中,
平面ABC,D,E,F,G分别为
,AC,
,
的中点,AB=BC=
,AC=
=2.
![]()
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)证明:直线FG与平面BCD相交.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com