【题目】已知O是平面直角坐标系的原点,双曲线
.
(1)过双曲线
的右焦点
作x轴的垂线,交
于A、B两点,求线段AB的长;
(2)设M为
的右顶点,P为
右支上任意一点,已知点T的坐标为
,当
的最小值为
时,求t的取值范围;
(3)设直线
与
的右支交于A,B两点,若双曲线右支上存在点C使得
,求实数m的值和点C的坐标.
科目:高中数学 来源: 题型:
【题目】四棱锥
中,底面
是边长为
的菱形,
,
是等边三角形,
为
的中点,
.
![]()
(1)求证:
;
(2)若
在线段
上,且
,能否在棱
上找到一点
,使平面
平面
?若存在,求四面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
年龄x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收缩压 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:
,
,![]()
![]()
请画出上表数据的散点图;
请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
的值精确到![]()
若规定,一个人的收缩压为标准值的
倍,则为血压正常人群;收缩压为标准值的
倍,则为轻度高血压人群;收缩压为标准值的
倍,则为中度高血压人群;收缩压为标准值的
倍及以上,则为高度高血压人群
一位收缩压为180mmHg的70岁的老人,属于哪类人群?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱
中,
平面
是线段
上的动点,
是线段
上的中点.
![]()
(Ⅰ)证明:
;
(Ⅱ)若
,且直线
所成角的余弦值为
,试指出点
在线段
上的位置,并求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体
的顶点
、
、
分别在两两垂直的三条射线
,
,
上,则在下列命题中,错误的是( )
![]()
A.
是正三棱锥
B. 直线
与平面
相交
C. 直线
与平面
所成的角的正弦值为![]()
D. 异面直线
和
所成角是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理过程是演绎推理的是( )
A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人
B. 由三角形的性质,推测空间四面体的性质
C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分
D. 在数列
中,
,可得
,由此归纳出
的通项公式![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
上一点,
为
的焦点.
![]()
(1)若
,
是
上的两点,证明:
,
,
依次成等比数列.
(2)过
作两条互相垂直的直线与
的另一个交点分别交于
,
(
在
的上方),求向量
在
轴正方向上的投影的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com