精英家教网 > 高中数学 > 题目详情
a∈(1,+∞)时,aα>aβ,则α、β间的大小关系是(    )

A.|α|>|β|          B.α>β            C.α≥0≥β          D.β>0>α

解析:∵由于a∈(1,+∞),

    ∴y=ax为增函数.∵aα>aβ

    ∴α>β.故选B.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x+
ax
-2)
,其中a是大于0的常数
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x+
ax
-2)
,其中a是大于0的常数.
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|-
9x
+a
,x∈[1,6],a∈R.
(Ⅰ)若a=1,试判断并证明函数f(x)的单调性;
(Ⅱ)当a∈(1,6)时,求函数f(x)的最大值的表达式M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(0,+∞)上的函数f(x)满足:①当x∈[1,3)时,f(x)=
x-1,1≤x≤2
3-x,2<x<3
;②f(3x)=3f(x).
(i)f(6)=
3
3

(ii)若函数F(x)=f(x)-a的零点从小到大依次记为x1,x2,…,xn,…,则当a∈(1,3)时,x1+x2+…+x2n-1+x2n=
6(3n-1)
6(3n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x+
a
x
-2)
,其中a是大于0的常数.
(1)设g(x)=x+
a
x
,判断并证明g(x)在[
a
,+∞)
内的单调性;
(2)当a∈(1,4)时,求函数f(x)在[2+∞)内的最小值;
(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

查看答案和解析>>

同步练习册答案