精英家教网 > 高中数学 > 题目详情
在△ABC中,
AB
=a,
AC
=b,D是BC的中点,则
AD
等于(  )
A、a-
1
2
b
B、
1
2
a+b
C、
1
2
a+
1
2
b
D、-
1
2
a+b
分析:在△ABC中,应用向量加法的平行四边形法则,即可将向量
AD
转化成
AB
AC
表示,从而得到答案.
解答:解:在△ABC中,D为BC的中点,
根据向量加法的平行四边形法则,
AD
=
1
2
AB
+
AC
)=
1
2
a+
1
2
b,
AD
=
1
2
a
+
1
2
b

故选:C.
点评:本题考查了向量的加减法混合运算,解题的关键是抓住点D为BC的中点,运用平行四边形法则,将向量
AD
转化成
AB
AC
表示.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圆的面积.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=a,AC=b,当
a
b
<0
时,△ABC为
钝角三角形
钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=3,AC=
7
,则△ABC的面积为
3
3
2
3
3
2
,△ABC的外接圆的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
a
AC
=
b
,M为AB的中点,
BN
=
1
3
BC
,则
 

查看答案和解析>>

同步练习册答案