精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2acos2x+bsinxcosx,且f(0)=2,f(
π
3
)=
1
2
+
3
2

(1)求f(x)的最大值与最小值;
(2)若α-β≠kπ,k∈Z,且f(α)=f(β),求tan(α+β)的值.
分析:(1)由f(0)=2 求得a值,由f(
π
3
)=
1
2
a+
3
4
b,得b=2
,化简f(x)=
2
sin(2x+
π
4
)+1
,可得最值.
 (2)f(α)=f(β),可得2α+
π
4
=2kπ+(2β+
π
4
)或2α+
π
4
=2kπ+π-(2β+
π
4
)
,得到α+β的值,从而求得tan(α+β)的值.
解答:解:(1)由f(0)=2a=2,得a=1,由f(
π
3
)=
1
2
a+
3
4
b,得b=2

∴f(x)=2cos2x+2sinxcosx=sin2x+cos2x+1=
2
sin(2x+
π
4
)+1

∴f(x)的最大值是
2
+1
,最小值是1-
2

(2)∵f(α)=f(β),∴sin(2α+
π
4
)=sin(2β+
π
4
)

2α+
π
4
=2kπ+(2β+
π
4
)或2α+
π
4
=2kπ+π-(2β+
π
4
)

α-β=kπ(舍去)或α+β=kπ+
π
4
,k∈Z
,∴tan(α+β)=tan(kπ+
π
4
)=1
点评:本题考查两角和的正弦、正切公式的应用,以及正弦函数的值域,得到2α+
π
4
=2kπ+(2β+
π
4
)或2α+
π
4
=2kπ+π-(2β+
π
4
)
是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案