精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式
(2)设a>0,讨论函数y=f(x)的单调性;
(3)若对任意x∈(0,1),恒有f(x)>1成立,求实数a的取值范围.
分析:(1)根据分式函数的分母不等于0可求出函数的定义域,然后根据分式函数的导数运算法则可求出f′(x)的解析式;
(2)讨论a与2的大小,然后根据导数符号可得函数的单调性;
(3)讨论a与0和2的大小,根据函数的单调性求出函数的最值,然后判定是否满足对任意x∈(0,1),恒有f(x)>1成立,从而求出a的取值范围.
解答:解:(1)∵x-1≠0∴f(x)的定义域为(-∞,1)∪(1,+∞),
f′(x)=
(e-ax-ae-ax)(1-x)+(1+x)e-ax
(1-x)2
=
ax2+2-a
(1-x)2
e-ax
(3分)
(2)①当0<a≤2时,f'(x)≥0,所以f(x)在(-∞,1),(1,+∞)上为增函数(4分)
②当a>2,由f′(x)>0得ax2+2-a>0,x>
a-2
a
x<-
a-2
a

f(x)在(-∞,-
a-2
a
),(
a-2
a
,1),(1,+∞)
上为增函数,在(-
a-2
a
a-2
a
)
上是减函数(7分)
(2)①当0<a≤2时,由(1)知,对任意x∈(0,1),恒有f(x)>f(0)=1(8分)
②当a>2时,由(1)知,f(x)在(0,
a-2
a
)
上是减函数,在(
a-2
a
,1
)
上是增函数,
x0=
1
2
a-2
a
∈(0,1)
,则f(x0)<f(0)=1(10分)
③当a≤0时,对任意x∈(0,1),恒有
1+x
1-x
>1
且e-ax≥1,得f(x)=
1+x
1-x
e-ax>1
(11分)
综上当且仅当a∈(-∞,2]时,若对任意x∈(0,1)恒有f(x)>1成立.     (12分)
点评:本题主要考查了利用导数研究函数的单调性,以及函数的定义域及其导函数的求法,同时考查了分类讨论的数学思想和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
-1,x>0
1,x<0
,则
(a+b)-(a-b)f(a-b)
2
(a≠b)的值是(  )
A、aB、b
C、a,b中较小的数D、a,b中较大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-x
1+x
的反函数为h(x),又函数g(x)与h(x+1)的图象关于有线y=x对称,则g(2)的值为(  )
A、-
4
3
B、-
1
3
C、-1
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
 
1-x2
,(|x|≤1)
|x|,(|x|>1)
,若方程f(x)=a有且只有一个实根,则实数a满足(  )
A、a<0B、0≤a<1
C、a=1D、a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x2
1-x2

①求它的定义域;
②求证:f(
1
x
)=-f(x)

③判断它在(1,+∞)单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

同步练习册答案