精英家教网 > 高中数学 > 题目详情
(2013•上海)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91
参照上述方法,可求得2000的所有正约数之和为
4836
4836
分析:这是一个类比推理的问题,在类比推理中,参照上述方法,2000的所有正约数之和可按如下方法得到:因为2000=24×53,所以2000的所有正约数之和为(1+2+22+23+24)(1+5+52+53),即可得出答案.
解答:解:类比36的所有正约数之和的方法,有:
2000的所有正约数之和可按如下方法得到:因为2000=24×53
所以2000的所有正约数之和为(1+2+22+23+24)(1+5+52+53)=4836.
可求得2000的所有正约数之和为 4836.
故答案为:4836.
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•上海) 在xOy平面上,将两个半圆弧(x-1)2+y2=1(x≥1)和(x-3)2+y2=1(x≥3),两条直线y=1和y=-1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π
1-y2
+8π.试利用祖恒原理、一个平放的圆柱和一个长方体,得出Ω的体积值为
2+16π
2+16π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为
a1
a2
a3
a4
a5
;以D为起点,其余顶点为终点的向量分别为
d1
d2
d3
d4
d5
.若m、M分别为(
ai
+
aj
+
ak
)•(
dr
+
ds
+
dt
)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知△ABC的内角A,B,C所对的边分别是a,b,c,若a2+ab+b2-c2=0,则角C的大小是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是
5
7
5
7
(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)如图,已知双曲线C1
x2
2
-y2=1
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”

查看答案和解析>>

同步练习册答案