精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
|x+m-1|
x-2
,m>0且f(1)=-1.
(1)求实数m的值;
(2)判断函数y=f(x)在区间(-∞,m-1]上的单调性,并用函数单调性的定义证明;
(3)求实数k的取值范围,使得关于x的方程f(x)=kx分别为:
①有且仅有一个实数解;
②有两个不同的实数解;
③有三个不同的实数解.
(1)由f(1)=-1,得
|m|
-1
=-1
,|m|=1,
∵m>0,∴m=1. (4分)
(2)由(1),m=1,从而f(x)=
|x|
x-2
,只需研究f(x)在(-∞,0]上的单调性.
当x∈(-∞,0]时,f(x)=
-x
x-2

设x1,x2∈(-∞,0],且x1<x2,则f(x1)-f(x2)=
-x1
x1-2
-
-x2
x2-2
=
2(x1-x2)
(x1-2)(x2-2)
,(6分)
∵x1<x2≤0,∴x1-x2<0,x1-2<0,x2-2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在区间(-∞,0]上是单调递增函数. (10分)
(3)原方程即为
|x|
x-2
=kx
…①
x=0恒为方程①的一个解. (11分)
若x<0时方程①有解,则
-x
x-2
=kx
,解得x=2-
1
k

2-
1
k
<0
,得 0<k<
1
2
; (13分)
若x>0且x≠2时方程①有解,则
x
x-2
=kx
,解得x=2+
1
k

2+
1
k
>0
2+
1
k
≠2
,得k<-
1
2
或k>0. (15分)
综上可得,当k∈[-
1
2
,0]
时,方程f(x)=kx有且仅有一个解;
k∈(-∞,-
1
2
)∪[
1
2
,+∞)
时,方程f(x)=kx有两个不同解;
k∈(0,
1
2
)
时,方程f(x)=kx有三个不同解.   (18分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案