精英家教网 > 高中数学 > 题目详情

已知函数

(Ⅰ)讨论函数的单调区间;

(Ⅱ)若上恒成立,求的取值范围。

 

【答案】

(Ⅰ)定义域。1分

时,单调递减,

单调递增。

时,单调递增。4分

(Ⅱ)由

令已知函数。5分

∵当时,

。7分

时,单调递减,时,单调递增。8分

单调递减,9分

上,,若恒成立,则。10分

【解析】本试题主要是考查了导数在研究函数中 运用。利用导数的符号判定单调性和极值和最值的运用。

(1)第一问中对于参数a要分类讨论确定导数符号,确定其单调区间。

(2)要是不等式恒成立,构造函数求解函数的最值即可。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

已知函数()

(1)求函数的定义域;

(2)讨沦函数的单调性.

查看答案和解析>>

同步练习册答案