精英家教网 > 高中数学 > 题目详情

已知椭圆=1(a>b>0)的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB∥OM.

(1)求椭圆的离心率e;

(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.

答案:
解析:

  解:(1)∵F1(-c,0),xM=-c,yM,∴kOM

  ∵kAB,AB∥OM,∴,∴b=c,故e=

  (2)设F1Q=r1,F2Q=r2,∠F1QF2,∴r1+r2=2a,F1F2=2c.

  cos-1=0.

  当且仅当r1=r2时,cos=0,所以∈[0,].


练习册系列答案
相关习题

科目:高中数学 来源: 题型:013

已知椭圆=1(a>b>0)的离心率为,则双曲线=1的离心率为

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学理科(四川卷) 题型:044

已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,离心率e=,右准线方程为x=2.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点F1的直线l与该椭圆交于M,N两点,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省高三3月月考数学试卷(解析版) 题型:解答题

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(ab>0)过点(1,),离心率为,左、右焦点分别为F1F2.点P为直线lxy=2上且不在x轴上的任意一点,直线PF1PF2与椭圆的交点分别为ABCDO为坐标原点.

(1)求椭圆的标准方程.

(2)设直线PF1PF2的斜率分别为k1k2.

(ⅰ)证明:=2.

(ⅱ)问直线l上是否存在点P,使得直线OAOBOCOD的斜率kOAkOBkOCkOD满足kOAkOBkOCkOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(ab>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1PF2与椭圆的交点分别为ABCD.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1PF2的斜率分别为k1k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案