精英家教网 > 高中数学 > 题目详情
如图所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,
(I)求证:EO⊥平面BDF;
(II)求二面角A-DF-B的大小.

【答案】分析:(I)求证EO⊥平面BDF,由面面垂直关系及正方形的性质易得EO⊥BD,再由题设中的条件易得∠EOF=90°;
(II)求二面角A-DF-B的大小需先做角,可过O作OP⊥AD于P,过P作PM⊥DF于M,连接OM,可证得∠OMP即二面角的平面角,由于这个三角形是直角三角形,平面角易求.
解答:证明:(I)如图,正方形ABCD和矩形ACEF所在的平面相互垂直,对角线BD⊥AC,故有BD⊥平面ACEF,又EO?平面ACEF,故得BD⊥EO
又AB=2,.可求得AC=2,即CO=AO=AF=CE=,由于三角形ECO与三角形FAO都是直角三角形,故可得∠EOC=∠FOA=45°,所以∠EOF=90°,即EO⊥OF
又FO∩BD=O,故有EO⊥平面BDF
(II)过O作OP⊥AD于P,过P作PM⊥DF于M,连接OM,
由题设条件知F-AD-O是直二面角,故可得OP⊥面ADF,由此可得OP⊥DF,由作图,PM⊥DF,故有DF⊥面OMP,所以OM⊥DF,由此可证得∠OMP即二面角的平面角,
在直线三角形DOA中,由于OA=OD,故P是AD中点,易得OP=1
在直角三角形DAF中可求得DF=,由P是中点得DP=1,
由于△DAF≈△DMP,故有得MP===
在直角三角形OPM中,tan∠OMP=
二面角A-DF-B的大小为60°
点评:本题考查线面垂直的证明以及二面角的求法,对于求二面角,要注意其步骤为作角,证角,求角三步,尤其是第二步,证角易漏掉,做题时要切记.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,CD=2AB=2AD.
(Ⅰ)求证:BC⊥BE;
(Ⅱ)在EC上找一点M,使得BM∥平面ADEF,请确定M点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直线AB的方程为6x-3y-4=0,向边长为2的正方形内随机地投飞镖,飞镖都能投入正方形内,且投到每个点的可能性相等,则飞镖落在阴影部分(三角形ABC的内部)的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1∥平面A1DE;
(2)求证:D1E⊥A1D;
(3)在线段AB上是否存在点M,使二面角D1-MC-D的大小为
π6
?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•金华模拟)如图所示的正方形中,将边AB、AD各4等分,分别作AB、AD的平行线段成4×4方格网,则从图中取出一由网格线形成的矩形,恰好为正方形的概率是
3
10
3
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1∥平面A1DE;     
(2)求证:D1E⊥A1D;
(3)(文)求D1E与平面A1DE所成角的大小.

查看答案和解析>>

同步练习册答案