(本小题满分16分)如图,
是椭圆
的左、右顶点,椭圆
的离心率为
,右准线
的方程为
.
![]()
(1)求椭圆方程;
(2)设
是椭圆
上异于
的一点,直线
交
于点
,以
为直径的圆记为
.
①若
恰好是椭圆
的上顶点,求
截直线
所得的弦长;
②设
与直线
交于点
,试证明:直线
与
轴的交点
为定点,并求该定点的坐标.
(1)
(2) ①
②见解析
【解析】
试题分析:(1)由
,解得
,故所求椭圆的方程为
…………………4分
(2)①因为
,所以直线
的方程为
,则点P的坐标为
,
从而
的方程为
,即其圆心为
,半径为
………… 6分
又直线
的方程为
,故圆心到直线
的距离为
………8分
从而
截直线
所得的弦长为
……………10分
②证:设
,则直线
的方程为
,则点P的坐标为
,
又直线
的斜率为
,而
,所以
,
从而直线
的方程为
……………………………13分
令
,得点R的横坐标为
………………………14分
又点M在椭圆上,所以
,即
,故
,
所以直线
与
轴的交点
为定点,且该定点的坐标为
……………………16分
考点:椭圆性质,直线与圆椭圆的位置关系
点评:本题计算量大,对学生的数据处理能力要求较高
科目:高中数学 来源: 题型:
(2010江苏卷)18、(本小题满分16分)
在平面直角坐标系
中,如图,已知椭圆
的左、右顶点为A、B,右焦点为F。设过点T(
)的直线TA、TB与椭圆分别交于点M
、
,其中m>0,
。
(1)设动点P满足
,求点P的轨迹;
(2)设
,求点T的坐标;
(3)设
,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
查看答案和解析>>
科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题
(本小题满分16分)
函数
,
(
),
A=![]()
(Ⅰ)求集合A;
(Ⅱ)如果
,对任意
时,
恒成立,求实数
的范围;
(Ⅲ)如果
,当“
对任意
恒成立”与“
在
内必有解”同时成立时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题
(本小题满分16分) 本题请注意换算单位
某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;
(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?
查看答案和解析>>
科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题
(本小题满分16分)设命题
:方程
无实数根;
命题
:函数
的值域是
.如果命题
为真命题,
为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题
(本小题满分16分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com