精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式x3-数学公式ax2+数学公式的极值点是x1,x2,函数g(x)=x-alnx的极值点是x0,若x0+x1+x2<2.
(I )求实数a的取值范围;
(II)若存在实数a,使得对?x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实数m的取值范围.

解:(I )∵函数f(x)=x3-ax2+的极值点是x1,x2,,
,x1,x2是方程的两个根,
,x1+x2=a,
∵g(x)=x-alnx的极值点是x0
,(x>0).
当a≤0时,g′(x)>0,函数无极值点.
当a>0,x∈(0,a),g′(x)<0;当x∈(a,+∞),g′(x)>0,
函数的极值点x0=a.
∵x0+x1+x2<2.


(II)∵
∴g(x)在[1,m]上为增函数,
∴g(x)min=g(1)=1.
导函数f′(x)的对称轴为x=
∴x1,x2都是小于1的正数,
∵f′(x)=(x-x1)(x-x2),令x1<x2

∴f(x)在[1,m]上为增函数,


即-27m2a+18m3+4m≤0,
∵m>1,令h(a)在()为减函数,
∴h(1)<0,即18m3-27m2+4m<0,
解得

分析:(I )由,x1,x2是方程的两个根,,x1+x2=a,由,(x>0).知当a≤0时,g′(x)>0,函数无极值点.当a>0,x∈(0,a),g′(x)<0;当x∈(a,+∞),g′(x)>0,函数的极值点x0=a.由此能求出实数a的取值范围.
(II)由,知g(x)在[1,m]上为增函数,故g(x)min=g(1)=1.导函数f′(x)的对称轴为x=,由此入手能够求出实数m的取值范围.
点评:本题考查利用导数求闭区间上函数的最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案