【题目】已知函数
的定义域是
,有下列四个命题,其中正确的有( )
A.对于
(
,0),函数
在
上是单调增函数
B.对于
(0,
),函数
存在最小值
C.存在
(
,0),使得对于任意
,都有
成立
D.存在
(0,
),使得函数
有两个零点
科目:高中数学 来源: 题型:
【题目】将函数
图象上所有点的横坐标缩短为原来的
,纵坐标不变,再向右平移
个单位长度,得到函数
的图象,则下列说法正确的是( )
A. 函数
的一条对称轴是![]()
B. 函数
的一个对称中心是![]()
C. 函数
的一条对称轴是![]()
D. 函数
的一个对称中心是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高血压高血糖和高血脂统称“三高”.如图是西南某地区从2010年至2016年患“三高”人数y(单位:千人)的折线图.
![]()
(1)由折线图看出,可用线性回归模型拟合
与
的关系,请求出相关系数(精确到0.01)并加以说明;
(2)建立
关于
的回归方程,预测2018年该地区患“三高”的人数.
参考数据:
,
,
,
.参考公式:相关系数
回归方程
中斜率和截距的最小二乘法估计公式分别为:![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,C是圆上的点,平面PAC⊥平面ABC,PA⊥AB.
![]()
(1)求证:PA⊥平面ABC;
(2)若PA=AC=2,求点A到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:设一正方形纸片ABCD边长为2分米,切去阴影部分所示的四个全等的等腰三角形,剩余为一个正方形和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中
,O为正四棱锥底面中心.
(Ⅰ)若正四棱锥的棱长都相等,求这个正四棱锥的体积V;
(Ⅱ)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积S表示为x的函数,并求S的范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为常数).
(Ⅰ)讨论函数
的单调性;
(Ⅱ)是否存在正实数
,使得对任意
,都有
,若存在,求出实数
的取值范围;若不存在,请说明理由;
(Ⅲ)当
时,
,对
恒成立,求整数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:
与拋物线C:
相切.
(1)求拋物线方程;
(2)斜率不为0的直线
经过拋物线C的焦点F,交抛物线于两点A,B,拋物线C上是否存在两点D,E关于直线
对称.若存在求出斜率k的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com