精英家教网 > 高中数学 > 题目详情
(a为实常数).
(1)当a<0时,用函数的单调性定义证明:y=f(x)在R上是增函数;
(2)当a=0时,若函数y=g(x)的图象与 y=f(x)的图象关于直线x=0对称,求函数y=g(x)的解析式;
(3)当a<0时,求关于x的方程f(x)=0在实数集R上的解.
【答案】分析:(1)设x1<x2,再进行作差f(x1)-f(x2),代入解析式进行化简,根据条件判断出符号,最后下结论;
(2)先设y=g(x)的图象任一点为P(x,y),再求出对称点(-x,y)代入f(x)=2x-1,进行整理即可;
(3)将方程进行化简,再设t=2x,则t>0,代入后得到关于t的二次方程,利用a的范围和求根公式进行求解,再求出x的值.
解答:解:(1)设x1<x2,则f(x1)-f(x2)=()-(
==
=
∵x1<x2,∴
∵a<0,∴1-a>0,
∴f(x1)-f(x2)<0,即 f(x1)<f(x2),
∴y=f(x)在R上是增函数;
(2)a=0时,f(x)=2x-1,设y=g(x)的图象任一点为P(x,y),
则P(x,y)关于直线x=0对称点(-x,y)在y=f(x)的图象,
∴y=2-x-1=,即g(x)=
(3)由得,22x-2x+a=0,
设t=2x,则t>0,且方程变为t2-t+a=0,
∵a<0,∴△=1-4a>1,
∴方程的根为<0,>0,
∴方程的根为:=2x
∴x=
即方程f(x)=0在实数集R上的解是
点评:本题是综合题,考查了利用单调性的定义证明过程,利用对称性求函数的解析式,以及换元法求方程的根,注意换元后应求出对应的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=aex+x2-ax,a为实常数.
(1)求f(x)的单调区间;
(2)求不等式f(x)>f(-x)的解集;
(2)设斜率为k的直线与f(x)的图象交于A、B两点,其横坐标分别为x1,x2,若f′(x0)=k,求证:x0
x1+x22

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg
a-x1+x
,其中a为实常数.
(1)设a=1,请指出函数y=f(x)的图象;(在答题卡上写出图象的代号A,B,C或D)
(2)设a>-1,试研究函数f(x)的奇偶性与单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+2a-1(a为实常数).
(1)若a=0,求函数y=|f(x)|的单调递增区间;
(2)设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式;
(3)设h(x)=
f(x)x
,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数学公式(a为实常数),y=g(x)与y=e-x的图象关于y轴对称.
(1)若函数y=f[g(x)]为奇函数,求a的取值.
(2)当a=0时,若关于x的方程数学公式有两个不等实根,求m的范围;
(3)当|a|<1时,求方程f(x)=g(x)的实数根个数,并加以证明.

查看答案和解析>>

同步练习册答案