精英家教网 > 高中数学 > 题目详情

已知等差数列前三项的和为,前三项的积为

(1)   求等差数列的通项公式;

(2)若成等比数列,求数列的前项和

 

【答案】

 (1),或.

(2)

【解析】考察等差等比数列的通项公式,和前n项和公式及基本运算。

(Ⅰ)设等差数列的公差为,则

由题意得 解得               

所以由等差数列通项公式可得,或.

,或.                                         

(Ⅱ)当时,分别为,不成等比数列;

时,分别为,成等比数列,满足条件.

 

记数列的前项和为.

时,;当时,

时, 

. 当时,满足此式.

综上, 

【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式求解;有时需要利用等差数列的定义:为常数)或等比数列的定义:为常数,)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列前三项的和为-3,前三项的积为8,
(1)求数列{an}的通项公式.
(2)若a2,a3,a1成等比数列,求数列{|an-10|}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012年高考(湖北理))已知等差数列前三项的和为,前三项的积为.

(Ⅰ)求等差数列的通项公式;

(Ⅱ)若,,成等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试文科数学试卷(解析版) 题型:解答题

已知等差数列前三项的和为,前三项的积为.

(1)求等差数列的通项公式;

(2)若成等比数列,求数列的前项和.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西省高三下学期5月月考理科数学试卷(解析版) 题型:解答题

已知等差数列前三项的和为,前三项的积为.

(Ⅰ)求等差数列的通项公式;

(Ⅱ)若,,成等比数列,求数列的前项和.

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(湖北卷解析版) 题型:解答题

(本小题满分12分)

已知等差数列前三项的和为,前三项的积为.

(Ⅰ)求等差数列的通项公式;

(Ⅱ)若成等比数列,求数列的前项和

 

查看答案和解析>>

同步练习册答案