【题目】已知
,设函数
. ![]()
(1)当
时,求
的极值点;
(2)讨论
在区间
上的单调性;
(3)
对任意
恒成立时,
的最大值为1,求
的取值范围.
【答案】(1)
是
的极小值点,无极大值点;(2)见解析;(3)
.
【解析】【试题分析】(1)先求导数,再解方程求导函数的零点;(2)运用导数与函数的单调性之间的关系分析探求;(3)先将不等式进行等价转化,再分离参数,构造函数运用导数知识求解:
(1)当
时,
,∴
,令
,则
,当
时,
;当
时,
,所以
是
的极小值点,无极大值点.
(2)
,
①当
时,
在
,
上单调递增;在
上单调递减,
②当
时,
在
上单调递增.
③当
时,
在
,
上单调递增;在
上单调递减
④当
时,
在
上单调递增,在
上单调递减.
(3)∵
,
。由
得
对任意
恒成立,即
![]()
对任意
恒成立.
令
,
,根据题意,可以知道
的最大值为1,则
恒成立.
由于
,则
.
当
时,
,令
,则
,令
,得
,则
在
上单调递减,在
上单调递增,则
,∴
在
上单调递增.
从而
,满足条件,故
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】关于函数f(x)=4sin(2x+
)(x∈R),有下列命题:
①y=f(x)的表达式可改写为y=4cos(2x﹣
);
②y=f(x)是以2π为最小正周期的周期函数;
③y=f(x)的图象关于点
对称;
④y=f(x)的图象关于直线x=﹣
对称.
其中正确的命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函数f(x)的零点;
(2)若f(x)同时满足下列条件:①当x=﹣1时,函数f(x)有最小值0,②f(1)=1求函数f(x)的解析式;
(3)若f(1)≠f(3),证明方程f(x)=
[f(1)+f(3)]必有一个实数根属于区间(1,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
已知椭圆
的短轴长为
,且与抛物线
有共同的焦点,椭圆
的左顶点为A,右顶点为
,点
是椭圆
上位于
轴上方的动点,直线
,
与直线
分别交于
两点.
(I)求椭圆
的方程;
(Ⅱ)求线段
的长度的最小值;
(Ⅲ)在线段
的长度取得最小值时,椭圆
上是否存在一点
,使得
的面积为
,若存在求出点
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间
内)中,按照5%的比例进行分层抽样,统计结果按
,
,
,
,
分组,整理如下图:
![]()
(Ⅰ)写出频率分布直方图(图乙)中
的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为
,
,试比较
与
的大小(只需写出结论);
(Ⅱ)从甲种酸奶日销售量在区间
的数据样本中抽取3个,记在
内的数据个数为
,求
的分布列;
(Ⅲ)估计1200个日销售量数据中,数据在区间
中的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,四边形
为矩形,
为等腰三角形,
,平面
平面
,且
,
,
、
分别为
和
的中点.
(
)证明:
平面
.
(
)证明:平面
平面
.
(
)当
上的动点
满足什么条件时,使三棱锥
的体积与四棱锥
体积的比值为
,并证明你的结论.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视. 为此贵阳市建立了公共自行车服务系统,市民凭本人二代身份证到自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20积分,当积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,扣1分;
③租用时间为2小时以上且不超过3小时,扣2分;
④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).
甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.3.
(1)求甲、乙两人所扣积分相同的概率;
(2)设甲、乙两人所扣积分之和为随机变量
,求
的分布列和数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com