【题目】设数列
的前
项和为
,且满足
(
).
(1)求数列
的通项公式;
(2)是否存在实数
,使得数列
为等差数列?若存在,求出
的值,若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,直线
的参数方程为
,(
为参数).以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的极坐标方程与曲线
的直角坐标方程;
(2)已知与直线
平行的直线
过点
,且与曲线
交于
两点,试求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在
市
区开设分店,为了确定在该区设分店的个数,该公司对该市开设分店的其他区的数据做了初步处理后得到下列表格.记
表示在各区开设分店的个数,
表示这
个分店的年收入之和.
![]()
(1)该公司已经过初步判断,可用线性回归模型拟合
与
的关系,求
关于
的线性回归方程;
(2)假设该公司在
区获得的总年利润
(单位:百万元)与
,
之间的关系为
,请结合(1)中的线性回归方程,估算该公司在
区开设多少个分店时,才能使
区平均每个分店的年利润最大?
参考公式:回归直线方程为
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,抛物线
的顶点是原点,以
轴为对称轴,且经过点
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)设点
,
在抛物线
上,直线
,
分别与
轴交于点
,
,
.求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,
、
分别为椭圆
的左、右顶点,点
满足
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
经过点
且与
交于不同的两点
、
,试问:在
轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,请求出点
的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com