【题目】已知点
,点
为动点,以
为直径的圆内切于
.
(1)证明
为定值,并求点
的轨迹
的方程;
(2)过点
的直线
与
交于
两点,直线
过点
且与
垂直,
与
交于
两点,
为
的中点,求
的面积的最大值.
科目:高中数学 来源: 题型:
【题目】为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,得到如图所示的频率分布直方图.
![]()
(1)求
的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:
.
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆E:
(
)过点
,其心率等于
.
(1)求椭圆E的标准方程;
(2)若A,B分别是椭圆E的左,右顶点,动点M满足
,且
椭圆E于点P.
①求证:
为定值:
②设
与以
为直径的圆的另一交点为Q,求证:直线
经过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国在欧洲的某孔子学院为了让更多的人了解中国传统文化,在当地举办了一场由当地人参加的中国传统文化知识大赛,为了了解参加本次大赛参赛人员的成绩情况,从参赛的人员中随机抽取
名人员的成绩(满分100分)作为样本,将所得数据进行分析整理后画出频率分布直方图如下图所示,已知抽取的人员中成绩在[50,60)内的频数为3.
![]()
(1)求
的值和估计参赛人员的平均成绩(保留小数点后两位有效数字);
(2)已知抽取的
名参赛人员中,成绩在[80,90)和[90,100]女士人数都为2人,现从成绩在[80,90)和[90,100]的抽取的人员中各随机抽取1人,求这两人恰好都为女士的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线![]()
,过焦点
的斜率存在的直线与抛物线交于
,
,且
.
![]()
(1)求抛物线的方程;
(2)已知
与抛物线交于点
(异于原点),过点
作斜率小于
的直线交抛物线于
,
两点(点
在
,
之间),过点
作
轴的平行线,交
于
,交
于B,
与
的面积分别为
,
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若函数
在区间
(
为自然对数的底数)上有唯一的零点,求实数
的取值范围;
(2)若在
(
为自然对数的底数)上存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设盒子中装有6个红球,4个白球,2个黑球,且规定:取出一个红球得
分,取出一个白球得
分,取出一个黑球得
分,其中
,
,
都为正整数.
(1)当
,
,
时,从该盒子中依次任取(有放回,且每球取到的机会均等)2个球,记随机变量
为取出此2球所得分数之和,求
的分布列;
(2)当
时,从该盒子中任取(每球取到的机会均等)1个球,记随机变量
为取出此球所得分数,若
,
,求
和
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com