【题目】已知函数
.
(1)求证:对任意实数
,都有
;
(2)若
,是否存在整数
,使得在
上,恒有
成立?若存在,请求出
的最大值;若不存在,请说明理由.(
)
【答案】(1)见证明;(2)见解析
【解析】
(1)利用导数求得
,令
,再利用导数即可求得
,问题得证。
(2)整理
得:
,令:
,由
得
,对
是否大于
分类, 当
时,即
时,利用导数即可证得
,当
时,利用导数即可求得
,要使不等式
恒成立转化成
成立,令
,利用导数即可求得
,
,即可求得
,问题得解。
解:(1)证明:由已知易得
,所以![]()
令
得:
显然,
时,
<0,函数f(x)单调递减;
时,
>0,函数f(x)单调递增
所以
令
,则由
得![]()
时,
>0,函数t(
)单调递增;
时,
<0,函数t(
)单调递减
所以
,即结论成立.
(2)由题设化简可得![]()
令
,所以![]()
由
=0得
①若
,即
时,在
上,有
,故函数
单调递增
所以![]()
②若
,即
时,
在
上,有
,故函数
在
上单调递减
在
上,有
.故函数
在
上单调递增
所以,在
上,
故欲使
,只需
即可
令![]()
由
得![]()
所以,
时,
,即
单调递减
又![]()
![]()
故![]()
科目:高中数学 来源: 题型:
【题目】为评估设备
生产某种零件的性能,从设备
生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:
直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | |
直径/mm | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值
,标准差
,以频率值作为概率的估计值.
(I)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为
,并根据以下不等式进行判定(
表示相应事件的概率):①
;②
;③
.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁.试判断设备
的性能等级.
(Ⅱ)将直径尺寸在
之外的零件认定为是“次品”,将直径尺寸在
之外的零件认定为“突变品”.从样本的“次品”中随意抽取两件,求至少有一件“突变品”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂
,
两条生产线生产同款产品,若产品按照一、二、三等级分类,则每件可分别获利10元、8元、6元,现从
,
生产线的产品中各随机抽取100件进行检测,结果统计如下图:
![]()
(1)根据已知数据,判断是否有99%的把握认为一等级产品与生产线有关?
(2)分别计算两条生产线抽样产品获利的方差,以此作为判断依据,说明哪条生产线的获利更稳定?
(3)估计该厂产量为2000件产品时的利润以及一等级产品的利润.
附:![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为
为参数
,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为
.
求曲线C的直角坐标方程与直线l的极坐标方程;
Ⅱ
若直线
与曲线C交于点
不同于原点
,与直线l交于点B,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x2+1)﹣e﹣|x|(e为自然对数的底数),则不等式f(2x+1)>f(x)的解集是( )
A. (﹣1,1)B. (﹣∞,﹣1)∪(1,+∞)
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如
且等于黄金分割比
,现从正五边形A1B1C1D1E1内随机取一点,则此点取自正五边形A2B2C2D2E2内部的概率为()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
![]()
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进
枝玫瑰花,
表示当天的利润(单位:元),求
的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的直角坐标方程;
(2)设点
的坐标为
,若点
是曲线
截直线
所得线段的中点,求
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com