【题目】在△ABC中,已知∠B=45°,c=2
,b=
,则∠A的值是( )
A.15°
B.75°
C.105°
D.75°或15°
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)=
是奇函数.
(1)求b的值;
(2)用定义法证明函数f(x)在R上是减函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
,抛物线
,
与
有公共的焦点
,
与
在第一象限的公共点为
,直线
的倾斜角为
,且
,则关于双曲线的离心率的说法正确的是()
A. 仅有两个不同的离心率
且
B. 仅有两个不同的离心率
且
C. 仅有一个离心率
且
D. 仅有一个离心率
且![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圆C:x2+y2﹣6x﹣8y+9=0.
(1)判断直线l1与圆的位置关系,并证明你的结论;
(2)直线l2过直线l1的定点且l1⊥l2 , 若l1与圆C交与A,B两点,l2与圆C交与E,F两点,求AB+EF的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:x∈R,都有ax2>﹣ax﹣1(a≠0)恒成立;命题q:圆x2+y2=a2与圆(x+3)2+(y﹣4)2=4外离.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)
(1)求点C到直线AB的距离;
(2)求AB边的高所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(20)(本小题满分13分)
已知函数
,
,其中
是自然对数的底数.
(Ⅰ)求曲线
在点
处的切线方程;
(Ⅱ)令
,讨论
的单调性并判断有无极值,有极值时求出极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Sn为数列{an}的前n项和,an>0,an2+2an=4Sn﹣1.
(1)求{an}的通项公式;
(2)设bn=
,求{bn}的前n项和Tn .
(3)cn=
,{cn}的前n项和为Dn , 求证:Dn<
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°. ![]()
(1)求证:EF⊥PB;
(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB的体积及直线PC与平面EFCB所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com