精英家教网 > 高中数学 > 题目详情

过双曲线=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆的切线,切点为E,延长FE交双曲线右支于点P,若,则双曲线的离心率为(   )

A.        B.            C.            D.

 

【答案】

C

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆G与双曲线12x2-4y2=3有相同的焦点,且过点P(1,
32
)

(1)求椭圆G的方程;
(2)设F1、F2是椭圆G的左焦点和右焦点,过F2的直线l:x=my+1与椭圆G相交于A、B两点,请问△ABF1的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0)
(1)过点A斜率
3
3
的直线l,交以A,B为焦点的双曲线于M,N两点,若线段MN的中点到y轴的距离为1,求该双曲线的方程;
(2)以A,B为顶点的椭圆经过点C(1,
3
2
),过椭圆的上顶点G作直线s,t,使s⊥t,直线s,t分别交椭圆于点P,Q(P,Q与上顶点G不重合).求证:PQ必过y轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线G:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右顶点A作斜率为1的直线m,分别与两渐近线交于B,C两点,若|AB|=2|AC|,则双曲线G的离心率为
10
10
3
10
10
3

查看答案和解析>>

科目:高中数学 来源: 题型:

点P在以F1,F2为焦点的双曲线E:
x2
a2
-
y2
b2
=1
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且
OP1
OP2
=-
27
4
2
PP1
+
PP2
=
0
,求双曲线E的方程;
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且
MQ
QN
(λ为非零常数),问在x轴上是否存在定点G,使
F1F2
⊥(
GM
GN
)
?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西南宁二中高三(上)8月月考数学试卷(理科)(解析版) 题型:选择题

F1,F2分别是双曲线-=1的左、右焦点,A是其右顶点,过F2作x轴的垂线与双曲线的一个交点为P,G是△PF1F2的重心,若=0,则双曲线的离心率是( )
A.2
B.
C.3
D.

查看答案和解析>>

同步练习册答案