【题目】教材上一例问题如下:
一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表,试建立y与x之间的回归方程.
温度 x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵数y/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
某同学利用图形计算器研究它时,先作出散点图(如图所示),发现两个变量不呈线性相关关系. 根据已有的函数知识,发现样本点分布在某一条指数型曲线
的附近(
和
是待定的参数),于是进行了如下的计算:
![]()
![]()
根据以上计算结果,可以得到红铃虫的产卵数y对温度x的回归方程为__________.(精确到0.0001) (提示:
利用代换可转化为线性关系)
科目:高中数学 来源: 题型:
【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ) ![]()
A.6
B.8
C.12
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三名大学生参加学校组织的“国学达人”挑战赛, 每人均有两轮答题机会,当且仅当第一轮不过关时进行第二轮答题.根据平时经验,甲、乙、丙三名大学生每轮过关的概率分别为
,且三名大学生每轮过关与否互不影响.
(1)求甲、乙、丙三名大学生都不过关的概率;
(2)记
为甲、乙、丙三名大学生中过关的人数,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网站从春节期间参与收发网络红包的手机用户中随机抽取
名进行调查,将受访用户按年龄分成
组:
,
,…,
,并整理得到如下频率分布直方图:
![]()
(Ⅰ)求
的值;
(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于
岁的概率;
(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )
表1
成绩 | 不及格 | 及格 | 总计 |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
总计 | 16 | 36 | 52 |
表2
视力 | 好 | 差 | 总计 |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
总计 | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 总计 |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
总计 | 16 | 36 | 52 |
表4
阅读量 | 丰富 | 不丰富 | 总计 |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
总计 | 16 | 36 | 52 |
A.成绩
B.视力
C.智商
D.阅读量
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD. ![]()
(1)求证:AB⊥PD;
(2)若∠BPC=90°,PB=
,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f0(x)=
(x>0),设fn(x)为fn﹣1(x)的导数,n∈N* .
(1)求2f1(
)+
f2(
)的值;
(2)证明:对任意n∈N* , 等式|nfn﹣1(
)+
fn(
)|=
都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10﹣
,t∈[0,24)
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com