精英家教网 > 高中数学 > 题目详情

设c1,c2…,cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆cn都与圆cn+1相互外切,以rn表示cn的半径,已知{rn}为递增数列.

(Ⅰ)证明:{rn}为等比数列;

(Ⅱ)设r1=1,求数列的前n项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=
3
3
x
相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.
(Ⅰ)证明:{rn}为等比数列;
(Ⅱ)设r1=1,求数列{
n
rn
}
的前n项和.精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2…⊙Cn是圆心在y2=4mx(m>0)上的一系列圆,它们的圆心纵坐标分别为a1,a2…an,已知a1=6,a1>a2>…>an>0,又⊙Ck(k=1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=
3
3
x
相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,以(λn,0)表示Cn的圆心,已知{rn}为递增数列.
(1)证明{rn}为等比数列(提示:
rn
λn
=sinθ
,其中θ为直线y=
3
3
x
的倾斜角);
(2)设r1=1,求数列{
n
rn
}
的前n项和Sn
(3)在(2)的条件下,若对任意的正整数n恒有不等式Sn
9
4
-
an
rn
成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设⊙C1,⊙C2,…,⊙Cn是圆心在抛物线y=x2上的一系列圆,它们圆心的横坐标分别记为a1,a2,…,an,已知a1=
1
4
,a1>a2>…>an>0,若⊙Ck(k=1,2,3,…,n)都与x轴相切,且顺次两圆外切.
(1)求证:{
1
an
}
是等差数列;
(2)求an的表达式;
(3)求证:a12+a22+…+an2
1
4

查看答案和解析>>

同步练习册答案