精英家教网 > 高中数学 > 题目详情

设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,]都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.

(1)求f()及f()

(2)证明:f(x)是周期函数;

(3)记an=f(2n+,求an.


解析:

(1)解  ∵对x1、x2

都有f(x1+x2)=f(x1)·f(x2),

∴f(x)=f(≥0,x∈[0,1].

∴f(1)=f(

 f(.

 ∵f(1)=a>0, ∴f(

(2)证明  ∵y=f(x)的图象关于直线x=1对称,

∴f(x)=f(1+1-x),即f(x)=f(2-x),x∈R.

又由f(x)是偶函数知,f(-x)=f(x),x∈R,

∴f(-x)=f(2-x),x∈R.

将上式中-x用x代换,得f(x)=f(x+2),x∈R.

这表明f(x)是R上的周期函数,且2是它的一个周期.

(3)解  由(1)知f(x)≥0,x∈[0,1].

∵f(=f(

=f(…·f(又f(

∵f(x)的一个周期是2,∴an=f(2n+)=f(),∴an=a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案