精英家教网 > 高中数学 > 题目详情

对任意的实数λ,直线(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2)的距离为d,求d的取值范围

将原方程化为(2x-y-6)+λ(x-y-4)=0,它表示的是过两直线2x-y-6=0和x-y-4=0交点的直线系方程,但其中不包括直线x-y-4=0.因为没有λ的值使其在直线系中存在.解方程组得所以交点坐标为(2,-2).当所求直线过点P和交点时,d取最小值为0;当所求直线与过点P和交点的直线垂直时,d取最大值,此时有d==4.
但是此时所求直线方程为x-y-4=0.而这条直线在直线系中不存在,所以d的取值范围是. 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知对任意的实数m,直线x+y+m=0都不与曲线f(x)=x3-3ax(a∈R)相切.
(I)求实数a的取值范围;
(II)当x∈[-1,1]时,函数y=f(x)的图象上是否存在一点P,使得点P到x轴的距离不小于
14
.试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=x3-3ax(a∈R),直线y=-x+m,m∈R
(Ⅰ)当a=
4
3
时,且曲线f(x)与直线有三个交点,求m的取值范围
(Ⅱ)若对任意的实数m,直线与曲线都不相切,
(ⅰ)试求a的取值范围;
(ⅱ)当x∈[-1,1]时,曲线f(x)的图象上是否存在一点P,使得点P到x轴的距离不小于
1
4
.试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意的实数m,直线y=mx+b与椭圆x2+4y2=1恒有公共点,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知存在实数a,满足对任意的实数b,直线y=-x+b都不是曲线y=x3-3ax的切线,则实数a的取值范围是
a<
1
3
a<
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意的实数k,直线y=kx+1与椭圆
x2
4
+
y2
n
=1恒有两个交点,则n的取值范围
 

查看答案和解析>>

同步练习册答案