精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2,-1),
b
=(λ,-2),若
a
b
的夹角为锐角,则λ的取值范围是
 
分析:本题中两个向量的夹角为锐角,故应转化为两向量的内积为正,且不共线,由此条件转化的方程求参数的范围即可
解答:解:由题意,
a
b
>0
a
b
≠|
a
||
b
|
,即2λ+2>0且λ≠4,
∴(-1,4)∪(4,+∞).
故答案为(-1,4)∪(4,+∞).
点评:本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,本题中两个向量的夹角为锐角,故可转化为两向量的内积大于0且两向量不共线,此转化有一个易漏点,即忘记考虑向量同向共线时向量内积也为正,做题时要注意转化的等价.本题属于基础公式应用题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知向量a=(-2,1),b=(0,1),若存在实数λ使得b⊥(λa+b),则λ等于
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,3),
b
=(-4,7),则
a
b
方向上正射影的数量是
65
5
65
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=5
2
,则|
b
|=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,-1,3),
b
=(-4,2,x),若
a
b
,则x=
10
3
10
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,3),
b
=(1,5),那么
a
b
等于(  )

查看答案和解析>>

同步练习册答案