精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数[07]上有16两个零点,且函数与函数都是偶函数,则[02019]上的零点至少有( )个

A.404B.406C.808D.812

【答案】C

【解析】

根据y=fx+2)与y=fx+7)都是偶函数,得到函数fx=f10+x),得到函数是周期函数,利用函数的周期性即可得到函数零点的个数,即可求解.

由题意,函数y=fx+2)与y=fx+7)都是偶函数,

可得函数fx)关于x=2x=7对称,即

所以,可得,所以10是函数fx)的一个周期,

又由定义域为R的函数y=fx)在[07]上有16两个零点,可知38也是函数的零点,

可得fx=0的根为10n+110n+310n+610n+8的形式,

所以0≤10n+1≤2019,解得-0.1≤n≤201.8,共201个,

0≤10n+3≤2019,解得-0.3≤n≤201.6,共201个,

0≤10n+6≤2019,解得-0.6≤n≤201.3,共201个,

0≤10n+8≤2019,解得-0.8≤n≤201.1,共201个,

故函数y=fx)在[02019]上的零点个数为808个,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在所有棱长都相等的三棱锥中,DEF分别是ABBCCA的中点,下列四个命题:

1平面PDF;(2平面

3)平面平面;(4)平面平面

其中正确命题的序号为________

A.2)(3B.1)(3C.2)(4D.1)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其图象与轴交于两点,且.

1)求的取值范围;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,过的直线交于两点,点的坐标为.

1)若点也是顶点为原点的抛物线的焦点,求抛物线的方程;

2)当轴垂直时,求直线的方程;

3)设为坐标原点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已定义,已知函数的定义域都是,则下列四个命题中为真命题的是_________.(写出所有真命题的序号)

都是奇函数,则函数为奇函数.

都是偶函数,则函数为偶函数.

都是增函数,则函数为增函数.

都是减函数,则函数为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若曲线存在斜率为-1的切线,求实数a的取值范围;

II)求的单调区间;

III)设函数,求证:当时, 上存在极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)设,当时,对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35μg/m3以下空气质量为一级,在35μg/m375μg/m3之间空气质量为二级,在75μg/m3以上空气质量为超标.如图是某市2019121日到10PM2.5日均值(单位:μg/m3)的统计数据,则下列叙述不正确的是(

A.10天中,125日的空气质量超标

B.10天中有5天空气质量为二级

C.5日到10日,PM2.5日均值逐渐降低

D.10天的PM2.5日均值的中位数是47

查看答案和解析>>

同步练习册答案