精英家教网 > 高中数学 > 题目详情

(本小题满分15分)

    在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图。

在选取的40名学生中。

   (I)求成绩在区间内的学生人数;

   (II)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间[90,100]内的概率。

 

【答案】

(1)4(2)

【解析】(1)因为各组的频率之和为1,所以成绩在区间的频率为

                 …………3分

所以,40名学生中成绩在区间的学生人数为(人)

                                                                                               …………5分

   (II)设A表示事件“在成绩大于等于80分的学生中随机选两名学生,至少有一名学生成绩在区间[90,100]内”,

由已知和(I)的结果可知成绩在区间内的学生有4人,

记这四个人分别为a,b,c,d。

成绩在区间内的学生有2人,                                   …………7分

记这两个人分别为e,f,

则选取学生的所有可能结果为:

基本事件数为15,                   …………9分

事件“至少一人成绩在区间[90,100]之间”的可能结果为:

基本事件数为9。                                                                    …………11分

所以         …………13分

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分15分)

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试分别解答以下两小题.

(ⅰ)若不等式对任意的恒成立,求实数的取值范围;

(ⅱ)若是两个不相等的正数,且,求证:

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题

(本小题满分15分).

已知分别为椭圆

上、下焦点,其中也是抛物线的焦点,

在第二象限的交点,且

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点P(1,3)和圆,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:)。求证:点Q总在某定直线上。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题

(本小题满分15分)

如图已知,椭圆的左、右焦点分别为,过的直线与椭圆相交于A、B两点。

(Ⅰ)若,且,求椭圆的离心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题

(本小题满分15分)若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题

(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:

(1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率

 

 

查看答案和解析>>

同步练习册答案