【题目】已知函数
的部分图象如图所示.
![]()
(1)求函数的解析式;
(2)设
,且方程
有两个不同的实数根,求实数m的取值范围和这两个根的和.
【答案】(1)
;(2)
或
,当
时,两根和为
,当
时,两根和为
.
【解析】
试题分析:(1)由函数图象的顶点坐标可知
,由图象过
,可求得
的值,由五点法可求得
的值,由此得到了函数的解析式;(2)在同一坐标系下画出
和直线
的图象,结合正弦函数的图象的特征,数形结合求得实数
的取值范围和这两个根的和.
试题解析:(1)显然
,又图象过(0,1)点,∴
f(0)=1,
∴sinφ=
,∵|φ|<
,∴φ=
;
由图象结合“五点法”可知,
对应函数y=sinx图象的点(2π,0),
∴ω·
+
=2π,得ω=2.
所以所求的函数的解析式为:f(x)=2sin
.
![]()
(2)如图所示,在同一坐标系中画出
和y=m(m∈R)的图象,
由图可知,当-2<m<0或
<m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根. ∴m的取值范围为:-2<m<0或
<m<2
当-2<m<0时,两根和为
;当
<m<2时,两根和为
.
科目:高中数学 来源: 题型:
【题目】已知圆C经过点
,
,且圆心在直线
上
(1)求圆C的方程.
(2)过点
的直线与圆C交于A,B两点,问:在直线
上是否存在定点N,使得
(
,
分别为直线AN,BN的斜率)恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=a-bcos
(b>0)的最大值为
,最小值为-
.
(1)求a,b的值;
(2)求函数g(x)=-4asin
的最小值并求出对应x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.现以边AC的中点D为坐标原点,平面ABC内垂直于AC的直线为
轴,直线AC为
轴,直线DA1为
轴建立空间直角坐标系,解决以下问题:
(1)求异面直线AB与A1C所成角的余弦值;
(2)求直线AB与平面A1BC所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
,
分别为
,
的中点,
,如图1.以
为折痕将
折起,使点
到达点
的位置,如图2.
![]()
![]()
如图1 如图2
(1)证明:平面
平面
;
(2)若平面
平面
,求直线
与平面
所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是某地搜集到的新房屋的销售价格
和房屋的面积
的数据:
房屋面积( | 115 | 110 | 80 | 135 | 105 |
销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150
时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,
是海面上一条南北方向的海防警戒线,在
上点
处有一个水声监测点,另两个监测点
分别在
的正东方向
处和
处.某时刻,监测点
收到发自目标
的一个声波,
后监测点
后监测点
相继收到这一信号,在当时的气象条件下,声波在水中的传播速度是
.
![]()
(1)设
到
的距离为
,用
分别表示
到
的距离,并求
的值;
(2)求目标
的海防警戒线
的距离(精确到
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com