精英家教网 > 高中数学 > 题目详情
已知函数,存在实数x1,x2满足下列条件:①x1<x2;②f′(x1)=f′(x2)=0;③|x1|+|x2|=2
(1)证明:0<a≤3;(2)求b的取值范围;
(3)若函数h(x)=f′(x)-6a(x-x1),证明:当x1<x<2时|h(x1)|≤12a.
【答案】分析:(1)由已知条件②可知,方程f′(x)=0有两个根,则,又x1<x2,可知x1<0,x2>0,
再由|x1|+|x2|=2可得,x1≤-1,0<x2≤1,所以x1•x2≤-1,
≤-1,解得0<a≤3,从而命题得证.
(2)由(1)知x2-x1=2,于是(x2-x12=(x2+x12-4x1•x2==4,整理得b=9a2-6a3,a∈(0,3],
利用导数可求得-81≤b≤3,由已知可知b≥0,故0≤b≤3.
(3)∵h(x)=f′(x)-6a(x-x1),∴h(x1)=f′(x1)=3ax12+2x1-a2,由(1)知代入h(x1)表达式
,即h(x1)=-a2+3a-,由(2)知b=9a2-6a3,于是h(x1)=a2且0<a≤3,所以0<a2≤12a恒成立.故|h(x1)|≤12a得证.
解答:(1)证明:由已知条件②可知,方程f′(x)=有两个根,由韦达定理得,
又x1<x2,可知x1<0,x2>0,再由|x1|+|x2|=2可得,x1≤-1,0<x2≤1,所以x1•x2≤-1,
≤-1,解得0<a≤3,从而命题得证.
(2)解:由(1)知x2-x1=2,于是(x2-x12=(x2+x12-4x1•x2==4,整理得b=9a2-6a3,a∈(0,3],
∵b′(a)=18a-18a2,a∈(0,3],令b′(a)=18a-18a2=0,解得a=0或a=1,又b(0)=0,b(1)=3,b(3)=-81
∴-81≤b≤3,由已知可知b≥0,故0≤b≤3.
(3)证明:∵h(x)=f′(x)-6a(x-x1),∴h(x1)=f′(x1)=3ax12+2x1-a2,由(1)知代入h(x1)表达式,即h(x1)=-a2+3a-,由(2)知b=9a2-6a3,于是h(x1)=a2且0<a≤3,所以0<a2≤9,即0<a2≤12恒成立.
故当x1<x<2时|h(x1)|≤12a,命题得证.
点评:主要考查利用导数求解参数的取值范围,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数,f(x)=x3+bx2+cx+d在点(0,f(0))处的切线方程为2x-y-1=0.
(1)求实数c,d的值;
(2)若过点P(-1,-3)可作出曲线y=f(x)的三条不同的切线,求实数b的取值范围;
(3)若对任意x∈[1,2],均存在t∈(1,2],使得et-lnt-4≤f(x)-2x,试求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函数y=g(x)的零点至少有一个在原点右侧,求实数a的范围.
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数f(x)=存在“中值相依切线”.
试问:函数G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•黄冈模拟)已知函数y=f(x)的反函数为y=f-1(x),定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足“a和性质”.
(1)判断函数g(x)=(x+1)2+1,x∈[-2,-1]是否满足“1和性质”,并说明理由;
(2)若F(x)=kx+b,其中k≠0,x∈R满足“2和性质”,则是否存在实数a,使得F(9)<F(cos2θ+asinθ)<F(1)对任意的θ∈(0,π)恒成立?若存在,求出a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2006年浙江省杭州市高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数,存在实数x1,x2满足下列条件:①x1<x2;②f′(x1)=f′(x2)=0;③|x1|+|x2|=2
(1)证明:0<a≤3;(2)求b的取值范围;
(3)若函数h(x)=f′(x)-6a(x-x1),证明:当x1<x<2时|h(x1)|≤12a.

查看答案和解析>>

同步练习册答案