(本小题满分14分)
已知直线
相交于A、B两点。
(1)若椭圆的离心率为
,焦距为2,求椭圆的标准方程;
(2)若
(其中O为坐标原点),当椭圆的离率
时,求椭圆的长轴长的最大值。
科目:高中数学 来源: 题型:解答题
已知圆O:
,点O为坐标原点,一条直线
:
与圆O相切并与椭圆
交于不同的两点A、B
(1)设
,求
的表达式;
(2)若
,求直线
的方程;
(3)若
,求三角形OAB面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长为2a,焦点是F1(-
,0)、F2(
,0),点F1到直线x=-
的距离为
,过点F2且倾斜角为锐角的直线l与椭圆交于A、B两点,使得|F2B|=3|F2A|.
(1)求椭圆的方程;
(2)求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
21.(本小题满分14分)
已知直线
过抛物线
的焦点
且与抛物线相交于两点
,自
向准线
作垂线,垂足分别为
.
(1)求抛物线
的方程;
(2)证明:无论
取何实数时,
,
都是定值;
(3)记
的面积分别为
,试判断
是否成立,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分) 在直角坐标系
中,点
到点
,
的距离之和是
,点
的轨迹是
,直线
与轨迹
交于不同的两点
和
.⑴求轨迹
的方程;⑵是否存在常数
,
?若存在,求出
的值;若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
经过点M(-2,-1),离心率为
。过点M作倾斜角
互补的两条直线分别与椭圆C交于异于M的另外两点P、Q。
(I)求椭圆C的方程;
(II)
能否为直角?证明你的结论;
(III)证明:直线PQ的斜率为定值,并
求这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆
的方程为
,双曲线
的左、右焦
点分别是
的左、右顶点,而
的左、右顶点分别是
的左、右焦点.
(1)求双曲线
的方程;
(2)若直线
与双曲线C2恒有两个不同的交点A和B,求
的范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com