精英家教网 > 高中数学 > 题目详情
对于代数式(x+1)n+1+(x+2)2n-1nN*)能被___________整除.

A.2x+3                                                             B.x2+3x+3

C.x2+2x+3                                                       D.x2+5x+5

解析:取n=1知能被x2+3x+3整除.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直线y=
1
2
x+1
上,点A1(x1,0),A2(x2,0),A3(x3,0),…,An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1),对于任意n∈N*,点An,Bn,An+1构成以∠Bn为顶角的等腰三角形,设△AnBnAn+1的面积为Sn
(1)证明:数列{yn}是等差数列;
(2)求S2n-1(用a和n的代数式表示);
(3)设数列{
1
S2n-1S2n
}
前n项和为Tn,判断Tn
8n
3n+4
(n∈N*)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直线y=
12
x+1
上,点A1(x1,0),A2(x2,0),A3(x3,0)…An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1),对于任意n∈N*,点An,Bn,An+1构成以∠Bn为顶点的等腰三角形,设△AnBnAn+1的面积为Sn
(1)证明:数列{yn}是等差数列;
(2)求S2n-1(用n和a的代数式表示).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省深圳市高级中学高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直线上,点A1(x1,0),A2(x2,0),A3(x3,0),…,An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1),对于任意n∈N*,点An,Bn,An+1构成以∠Bn为顶角的等腰三角形,设△AnBnAn+1的面积为Sn
(1)证明:数列{yn}是等差数列;
(2)求S2n-1(用a和n的代数式表示);
(3)设数列前n项和为Tn,判断Tn(n∈N*)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考数学冲刺预测试卷04(理科)(解析版) 题型:解答题

已知点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直线上,点A1(x1,0),A2(x2,0),A3(x3,0),…,An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1),对于任意n∈N*,点An,Bn,An+1构成以∠Bn为顶角的等腰三角形,设△AnBnAn+1的面积为Sn
(1)证明:数列{yn}是等差数列;
(2)求S2n-1(用a和n的代数式表示);
(3)设数列前n项和为Tn,判断Tn(n∈N*)的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案